人工智能创造了过度效率。组织必须适应它。
3 分•作者: eriam•5 天前
AI 不仅仅提高生产力:它创造了*过度效率*。
个人和小团队现在能够比现有组织更快地生成决策、选项和计划,而这些组织的设计目的正是为了验证、协调或吸收这些内容。瓶颈已经从执行转移到治理。
当过剩的生产能力在没有吸收层的情况下积累时,组织不会逐渐适应。从历史上看,它们会冻结:更严格的规则、集中化、禁令、脱钩。
我们在 COVID 期间看到了类似的反应:当系统无法在本地吸收冲击时,它们在全球范围内关闭。
似乎被讨论不足的是*吸收*:不是“我们能生产多快”,而是*一个组织在不采取防御性关闭措施的情况下,能够消化多少决策、选项和变化*。
两种机制似乎相关但理论研究不足:(1)小的、局部的流程更改,重新分配协调和决策负荷;(2)持续的技能和角色转变,人们围绕仍然需要被决策、维护和验证的内容重新定位。
我一直在尝试将此问题视为一种“传导”问题,即人类决策和合法性如何与几代人、AI 和人类一起流动。
如果你看到过组织很好地处理了这个问题(或严重失败),我会很感兴趣:是什么真正让系统能够吸收 AI 驱动的过度效率,而不会退回到控制、排名、裁员或关闭?
查看原文
AI doesn’t just increase productivity: it creates *over-efficiency*.<p>Individuals and small teams can now generate decisions, options, and initiatives faster than existing organizations were designed to legitimize, coordinate, or absorb. The bottleneck has shifted from execution to governance.<p>When surplus productive capacity accumulates without an absorption layer, organizations don’t gradually adapt. Historically, they freeze: tighter rules, centralization, bans, decoupling.<p>We saw a similar reflex during COVID: when systems couldn’t absorb shock locally, they shut down globally.<p>What seems under-discussed is <i>absorption</i>: not "how fast can we produce" but <i>how many decisions, options, and changes an organization can metabolize without defensive closure</i>.<p>Two mechanisms seem relevant but under-theorized: (1) small, local process changes that redistribute coordination and decision load; (2) continuous skill and role shifts, as people reposition around what still needs to be decided, maintained, and legitimized.<p>I’ve been trying to think about this as a kind of "conduction" problem, how human decision-making and legitimacy flow alongside generations, AI and people.<p>If you’ve seen organizations handle this well (or fail badly), I’d be curious: what actually lets systems absorb AI-driven over-efficiency without reverting to control, ranking, layoffs or shutdown?