分析是“必要的恶”还是真正的价值驱动力?
4 分•作者: tiazm•大约 20 小时前
我从事数据分析和高级分析工作大约 6 年了。我最初在一家大型咨询公司工作,后来单干了,所以我近距离观察过大型企业和小型产品团队。<p>有些事情一直困扰着我。在大多数项目中,数据分析感觉就像基础设施,没有人真正对此感到兴奋。在构建产品时,人们很少愿意投资于此。它被视为“应该拥有”的东西,而不是“想要拥有”的东西。<p>团队“乐于”为软件开发、广告、文案撰写和设计付费。这些被认为是直接有用的。数据分析(GA4、事件跟踪,甚至更结构化的设置,如 CDP)通常被视为背景噪音,是保持引擎运转的必要条件,但并不能真正推动产品每天向前发展。<p>实际上,许多团队最终只使用少数几个指标来做决策,即使底层存在复杂的数据分析堆栈。其余的只是“以防万一”。<p>我很好奇其他人是否也看到了同样的模式。数据分析被低估是因为它的投资回报是间接和延迟的吗?或者说,大多数数据分析工作只是为了团队实际做出的决策而过度设计了吗?数据分析在什么时候从“必要的管道”转变为真正的竞争优势?<p>很想听听那些构建和扩展过产品的创始人、工程师和产品人员的看法。
查看原文
I’ve been working in analytics and advanced analytics for about 6 years. I started in a large consultancy and later went solo, so I’ve seen both enterprise and smaller product teams up close.<p>Something keeps bothering me. In most projects, analytics feels like infrastructure that no one is genuinely excited about. People rarely want to invest in it when building a product. It’s treated as something you should have, not something you want to have.<p>Teams are “happy” to pay for software development, advertising, copywriting, design. Those are seen as directly useful. Analytics (GA4, event tracking, or even more structured setups like CDPs) is often perceived as background noise, necessary to keep the engine running, but not something that meaningfully moves the product forward day to day.<p>In practice, many teams end up using only a handful of metrics to make decisions, even when a complex analytics stack exists underneath. The rest is there “just in case.”<p>I’m curious whether others see the same pattern. Is analytics undervalued because its ROI is indirect and delayed? Or is most analytics work simply over-engineered for the actual decisions teams make? At what point does analytics shift from “necessary plumbing” to a real competitive advantage?<p>Would love to hear perspectives from founders, engineers, and product folks who’ve built and scaled things.