Ask HN:对于长期运行的 AI 智能体,你们如何定义“完成”?
1 分•作者: IntelliAvatar•大约 14 小时前
我一直在从事长时间运行的自动化/代理系统相关工作,我经常遇到的一个问题是,如何定义“完成”非常困难。<p>演示很容易:只要顺利完成,任务就结束了。
实际系统则要复杂得多——部分失败、重试、幂等性、不明确的终止状态,以及何时停止或升级的问题。<p>对于构建过调度程序、代理或其他长时间运行系统的人来说:
你们在实践中是如何定义“完成”的?
是状态机、不变量、超时、外部信号,还是仅仅是操作经验法则?
查看原文
I've been working on long-running automation / agent systems, and one thing I keep running into is how hard it is to define "done".<p>Demos are easy: a task finishes once the happy path works.
Real systems are messier — partial failures, retries, idempotency, unclear terminal states, and the question of when to stop or escalate.<p>For people who’ve built schedulers, agents, or other long-running systems:
how do you define "done" in practice?
Is it a state machine, invariants, timeouts, external signals, or just operational heuristics?