AI 编程很性感,但会计才是真正唾手可得的自动化目标。

2作者: bmadduma18 天前
正在致力于自动化小型企业财务(簿记、对账、基本报告)。 我一直注意到的一件事是:与编程相比,会计似乎是更适合自动化的领域: * **基于规则** 复式记账、会计科目表、税务规则、重要性阈值。对于大多数日常交易,你不是在发明新的逻辑,而是在应用现有的规则。 * **可验证** 账目要么平衡,要么不平衡。总账要么对账,要么不对账。几乎总有一个“基本事实”可以用来比较(银行馈送、对账单、前期)。 * **枯燥且重复** 相同的供应商,相同的类别,每个月相同的模式。人类讨厌这项工作。软件喜欢它。 对于会计,至少在小型企业层面,大部分工作感觉像是: * 标准化来自银行/卡/发票的数据 * 应用确定性或可配置的规则 * 突出异常情况以供人工审核 * 运行一致性检查和报告 真正困难的部分(税务策略、边缘情况、混乱的历史、与当局沟通)在总工时中所占比例较小,但需要人工。而重复的、基于规则的工作才是最耗时的。
查看原文
Working on automating small business finance (bookkeeping, reconciliation, basic reporting).<p>One thing I keep noticing: compared to programming, accounting often looks like the more automatable problem:<p>It’s rule-based Double entry, charts of accounts, tax rules, materiality thresholds. For most day-to-day transactions you’re not inventing new logic, you’re applying existing rules.<p>It’s verifiable The books either balance or they don’t. Ledgers either reconcile or they don’t. There’s almost always a “ground truth” to compare against (bank feeds, statements, prior periods).<p>It’s boring and repetitive Same vendors, same categories, same patterns every month. Humans hate this work. Software loves it.<p>With accounting, at least at the small-business level, most of the work feels like:<p>normalize data from banks &#x2F; cards &#x2F; invoices<p>apply deterministic or configurable rules<p>surface exceptions for human review<p>run consistency checks and reports<p>The truly hard parts (tax strategy, edge cases, messy history, talking to authorities) are a smaller fraction of the total hours but require humans. The grind is in the repetitive, rule-based stuff.