我用 EDA 和本地 LLM 做出更好的产品决策

2作者: pdxbug7 个月前
产品经理如何通过更智能的 EDA 助力 AI/ML 产品决策 好的决策始于好的问题。在产品经理决定构建哪些功能之前,一个最容易被忽视但至关重要的步骤是:探索性数据分析 (EDA)。 为什么?因为好的 EDA 可以加速假设验证,帮助你提出正确的问题,测试假设,应用统计技术,揭示关于用户旅程的见解,明确 KPI——最终帮助你做出更智能、更具战略性和以用户为中心的决策。 多年来,我开发了一个轻量但有效的方法,帮助自己和团队更快地行动——尤其是在以下情况下: * 处理无法离开本地网络的敏感或 PII 数据 * 处理非常大的数据集 * 简化与分析师和数据科学家的协作 以下是我的常用设置,为我们节省了数天(甚至数周)的时间: * 数据分析和可视化——Jupyter Notebook + Pygwalker 不再需要导出 CSV 文件或在 BI 工具和原始数据之间切换。 * 带有 LMStudio 的本地 LLM 当需要帮助探索假设、起草 SQL 或总结发现时 这是我关于这个话题的 LinkedIn 帖子。 [https://www.linkedin.com/posts/peekay-chan-453102_pygwalker-lmstudio-productmanagement-activity-7352780192395792384-AFDe?utm_source=share&utm_medium=member_desktop&rcm=ACoAAAAD2_8BA9f2IpYDPZmflw9ziUIVH_mw7V8](https://www.linkedin.com/posts/peekay-chan-453102_pygwalker-lmstudio-productmanagement-activity-7352780192395792384-AFDe?utm_source=share&utm_medium=member_desktop&rcm=ACoAAAAD2_8BA9f2IpYDPZmflw9ziUIVH_mw7V8) 很想听听其他 PM/分析师/数据科学家是如何做的。
查看原文
How product managers supercharge AI&#x2F;ML product decision-making with smarter EDA. Good decisions start with good questions. Before product managers decide what features to build, one of the most overlooked yet critical steps is: Exploratory Data Analysis (EDA)<p>Why? Because good EDA accelerates hypothesis validation, helps you ask the right questions, test assumptions, apply statistical techniques, uncover insights about the user journey, clarify KPIs — and ultimately helps you make smarter, more strategic, and user-centric decisions.<p>Over the years, I’ve developed a lightweight but effective process to help myself and teams move faster — especially when: dealing with sensitive or PII data that can’t leave local networks working with very large datasets streamlining collaboration with analysts and data scientists<p>Here’s my go-to setup that has saved us days (if not weeks): Data analysis &amp; visualization — Jupyter Notebook + Pygwalker No more exporting CSVs or bouncing between BI tools &amp; raw data. Local LLM with LMStudio When I need help exploring hypotheses, drafting SQL, or summarizing findings<p>Here is my LinkedIn post about this topic. https:&#x2F;&#x2F;www.linkedin.com&#x2F;posts&#x2F;peekay-chan-453102_pygwalker-lmstudio-productmanagement-activity-7352780192395792384-AFDe?utm_source=share&amp;utm_medium=member_desktop&amp;rcm=ACoAAAAD2_8BA9f2IpYDPZmflw9ziUIVH_mw7V8<p>Would love to hear how other PMs&#x2F;Analysts&#x2F;Data Scientist go about this.