Ask HN: Kafka 或事件驱动系统在 LLM 基础设施中如何应用?

2作者: pella_may6 个月前
想知道像 Kafka(或其他替代方案)这样的事件驱动技术是如何融入大型 LLM 提供商的后端和/或基础设施的。 我主要想到的问题有: 1. 大型 LLM 提供商如何处理训练数据、评估结果和人类反馈的流程?这些是通过事件流(如 Kafka)进行实时处理,还是更多地依赖批处理和传统的 ETL 管道? 2. 对于具有依赖关系的复杂 ML 管道(例如,数据摄取 -> 预处理 -> 训练 -> 评估 -> 部署),他们是否使用事件驱动的编排,其中每个阶段发布一些完成事件,或者他们是否使用传统的流程编排器,如 Airflow,并采用基于轮询的依赖关系管理? 3. 他们如何处理实时性能监控和安全信号?这些是能够触发即时响应(如模型回滚)的事件驱动系统,还是主要进行批处理分析,并有一些延迟的反应? 我基本上是想了解事件驱动范式在现代 AI 基础设施中的应用程度,如果有人正在(或曾经)从事这方面的工作,我很乐意听取任何高层次的见解。
查看原文
Curious how some event-driven technologies like Kafka (or alternatives) fit into the backend and&#x2F;or infrastructure of large LLM providers.<p>Some of the questions I have in mind are more:<p>1. How do large LLM providers handle the flow of training data, evaluation results and human feedback? Are these managed through event streams (like Kafka) for real-time processing or do they rely more on batch processing and traditional ETL pipelines?<p>2. For complex ML pipelines with deps (eg. data ingestion -&gt; preprocessing -&gt; training -&gt; evaluation -&gt; deployment), do they use event-driven orchestration where each stage publishes some completion events or do they use traditional workflow orchestrators like Airflow with polling-based dependency management?<p>3. How do they handle real-time performance monitoring and safety signals? Are these event-driven systems that can trigger immediate responses (like model rollbacks) or are they primarily batch analytics with some delayed reactions?<p>I&#x27;m basically trying to understand how far the event-driven paradigm fits in modern AI infra and I would love any high-level insights if someone is (or has been) working with it.