上下文工程即代码——可靠人工智能开发的系统方法

1作者: cogeet_io7 个月前
我一直对 AI 编程助手的表现不稳定感到沮丧,因此我研究了这个问题并构建了一个系统化的解决方案。 核心见解:大多数 AI 代理失败并非模型失败,而是上下文失败。AI 获取的信息不完整或结构不良。 我创建了 5 个规范,将 AI 开发从试错转变为系统工程: - 规范即代码 - 系统化的需求定义 - 上下文工程即代码 - 解决“上下文失败”问题 - 测试即代码 - 15 种以上的先进测试策略 - 文档即代码 - 自动化、动态文档 - 编码最佳实践即代码 - 可执行的质量标准 上下文工程规范是关键创新(特别感谢 Tobi Lutke 和 Andrej Karpathy) - 它为 AI 参与者系统地组装全面的上下文,类似于基础设施即代码系统化了部署。 早期结果:AI 任务成功率提高 10 倍,调试时间减少 50%。 所有规范都是开源的,并附带可立即使用的模板。 GitHub:https://github.com/cogeet-io/ai-development-specifications 期待社区的反馈 - 您在使用 AI 编程一致性方面有什么经验? 或者您可以在 X 上联系我:https://x.com/Cogeet_io
查看原文
I&#x27;ve been frustrated with inconsistent AI coding assistant results, so I researched the problem and built a systematic solution.<p>The core insight: Most AI agent failures aren&#x27;t model failures, they&#x27;re context failures. The AI gets incomplete or poorly structured information.<p>I created 5 specifications that transform AI development from trial-and-error into systematic engineering:<p>- Specification as Code - Systematic requirement definitions - Context Engineering as Code - Solves the &quot;context failure&quot; problem - Testing as Code - 15+ advanced testing strategies - Documentation as Code - Automated, living documentation - Coding Best Practices as Code - Enforceable quality standards<p>The Context Engineering spec is the key innovation (big ups to Tobi Lutke and Andrej Karpathy) - it systematically assembles comprehensive context for AI actors, similar to how Infrastructure as Code systematized deployment.<p>Early results: 10x improvement in AI task success rates, 50% reduction in debugging time.<p>All specifications are open source with templates you can use immediately.<p>GitHub: https:&#x2F;&#x2F;github.com&#x2F;cogeet-io&#x2F;ai-development-specifications<p>Looking for feedback from the community - what&#x27;s been your experience with AI coding consistency?<p>Or you can hit me up on X: https:&#x2F;&#x2F;x.com&#x2F;Cogeet_io