问 HN:2025 年,自托管、带本地 AI 的照片库会用什么技术栈?
28 分•作者: jamesxv7•6 个月前
首先,这纯粹是一个我个人的学习项目,旨在结合我的三大爱好:摄影、软件工程和我的家庭回忆。我有一个庞大的家庭照片集,想构建一个交互式体验来探索它们,类似于 Google 或 Apple 照片的功能。<p>我的目标是创建一个具有智能搜索功能的系统,其中一个最重要的要求是它必须完全在我的本地硬件上运行。隐私是关键,但主要的驱动力是自己动手构建它的挑战和乐趣(显然是为了学习)。<p>我想要实现的关键功能包括:<p>自动识别和标记家庭成员(本地人脸识别)。<p>为每张照片生成描述性标题。<p>自然语言搜索(例如,“给我看看去年夏天我们在 Luquillo 海滩的照片”)。<p>我已经向 AI 工具咨询了一个高层次的项目计划,它们提供了一个可靠的蓝图(例如,使用 LLaVA 的 Ollama,像 ChromaDB 这样的向量数据库,你懂的)。现在,我非常感兴趣于真实的、人类的体验。我正在寻找建议、学习故事,以及只有在构建类似东西时才会出现的细节。<p>对于 2025 年这样的项目,您会推荐哪些工具、模型和最佳实践?具体来说,我很好奇如何将结构化元数据(EXIF)、人脸识别数据和语义向量搜索结合到一个统一的应用程序中。<p>非常感谢任何建议!
查看原文
First of all, this is purely a personal learning project for me, aiming to combine three of my passions: photography, software engineering, and my family memories. I have a large collection of family photos and want to build an interactive experience to explore them, ala Google or Apple Photo features.<p>My goal is to create a system with smart search capabilities, and one of the most important requirements is that it must run entirely on my local hardware. Privacy is key, but the main driver is the challenge and joy of building it myself (an obviously learn).<p>The key features I'm aiming for are:<p>Automatic identification and tagging of family members (local face recognition).<p>Generation of descriptive captions for each photo.<p>Natural language search (e.g., "Show me photos of us at the beach in Luquillo from last summer").<p>I've already prompted AI tools for a high-level project plan, and they provided a solid blueprint (eg, Ollama with LLaVA, a vector DB like ChromaDB, you know it). Now, I'm highly interested in the real-world human experience. I'm looking for advice, learning stories, and the little details that only come from building something similar.<p>What tools, models, and best practices would you recommend for a project like this in 2025? Specifically, I'm curious about combining structured metadata (EXIF), face recognition data, and semantic vector search into a single, cohesive application.<p>Any and all advice would be deeply appreciated. Thanks!